Question 1 There is a factory located at each of the two places P and Q. From these locations, a certain commodity is delivered to each of the three depots situated at A, B and C. The daily requirements of the depot are a, b and c units of the commodity, respectively while the production capacity of the factories at P and Q are P and Q units, respectively. Further, the cost of transportation from any factory to any depot is given below:

	А	В	С
P	c_{pa}	c_{pb}	c_{pc}
Q	c_{qa}	c_{qb}	c_{qc}

(a) Formulate the above problem as an optimization problem.

[10]

Answer

The given problem can be exhibited diagrammatically as follows:

Here, let the factory at P at transport x any y unit to A and B respectively. Since, the requirement are always non-negative quantity.

We have,

$$x \ge 0, y \ge 0 \text{ and } p - (x + y) \ge 0$$

Similarly,
$$(a - x) \ge 0$$
, $(b - y) \ge 0$ and $q - [(a - x) + (b - y)] \ge 0$

The transportation cost from the factory at P to A, B and C are c_{pa} , c_{pb} and c_{pc} , respectively. Similarly, the transportation cost for Q to A, B and C are c_{qa} , c_{qb} and c_{qc} . Hence, the cost of transportation is,

$$Z = c_{pa}x + c_{pb}y + c_{pc}(P - \overline{x + y}) + c_{qa}(a - x) + c_{qb}(b - y) + c_{qc}(q - (a - x) + (b - y))$$

Clearly this is to minimize the cost of transportation, hence the optimization problem can be formally stated as:

OBJECTIVE:

Minimize
$$Z = (c_{pa} - c_{pc} + c_{qc})x + (c_{pb} - c_{pc} - c_{qb} + c_{qc})y + p \cdot c_{pc} + a \cdot c_{qa} + b \cdot c_{qb} + q \cdot c_{qc} - (a \cdot c_{qc} + b \cdot c_{qc})$$

Subject to

$$(x+y) \le p$$

$$x - y \ge q(a + b)$$
 and $0 \le x \le a, 0 \le y \le b$

Here, x and y are the design parameters only.

(b) It is proposed to solve the above optimization problem using Binary coded GA.

Decide the genotype for the chromosome structure to do this. [5]

<u>Answer</u>

As there are only two design parameters, the genotype of the chromosome would look like

Genotype: X y

For binary encoded GA, let each parameter be represented by $n\ bits$. Since, x and y are with the same domain of values, the, phenotype for binary-coded GA will look as follows.

(c) Suppose the problem needs to be adapted with m factories and n depots. What change in the chromosome structure you should devise? [5]

<u>Answer</u>

We see that for two factory problems, we need two design parameters to be considered. Thus, generalizing the above, for m+1 number of factories, we need to accommodate m design parameters. Hence, the chromosome structure would be

Genotype for m + 1 factory Binary coded GA

$b_{11},b_{12},\ldots\ldots,b_{1n}$	$b_{21}, b_{22}, \dots, b_{2n}$	 $b_{m1}, b_{m2}, \ldots, b_{mn}$
x_1	x_2	χ_m

Question 2 Answer the following:

(a) What is the use of selection operation in Genetic algorithm?

[2]

Answer

The selection operation in Genetic algorithm is used to select individuals from the current population. The selected individuals will form a mating pool.

(b) Mention four criteria, which you should consider to judge the efficiency of a selection strategy? [4]

Answer

The four criteria which are usually considered as the measure of efficiency of any selection strategy are:

- (i) Selection pressure: How good individuals are selected.
- (ii) Population diversity: How varieties of individuals are selected.
- (iii) Convergence rate: Selection should lead to a faster search towards optimal solution.
- (iv) Solution quality: Selection should lead to global optimum or near global optimum solution.
- (c) Precisely state the **two** major steps in *Tournament selection* strategy. [4]

<u>Answer</u>

Tournament selection strategy can be stated as follows:

Suppose, the size of the population is N and our task is to select N_p $(N_p \leq N)$ individuals from the current population. Further, let us consider N_u $(N_u \ll N)$ be the size of each team. The two steps in the Tournament selection is as follows.

Step 1:

Select N_u members randomly from the current population of size N.

Step 2:

Select a winner from the ${\it N}_u$ individual from the currently chosen. Put the winner in the mating pool.

As we have to select N_p individuals, we have to repeat Step 1-2 for N_p times.

(d) It is planned to apply Roulette wheel selection strategy into Tournament selection.Give your suggestion, how the same can be realized. [2]

Answer

In the second step of *Tournament selection strategy*, there is a task to select a winner from a team. This selection of winner can be carried out applying *Roulette wheel scheme*. (Here only one round to select an individual from the team.)

(e) How *Tournament selection strategy* is comparable to Roulette wheel selection strategy, if they are individually applied in Genetic algorithm? You may give your comparison in the form of a table with reference to **four** efficiency measurement criteria you have mentioned as your answer to *Problem 2(b)*. [8]

Answer

A chart showing a summary of comparison is shown in the table given below.

Criteria	Population	Selection pressure	Convergence rate	Solution
Scheme	diversity			quality
Roulette Wheel selection	LOW: It favors	HIGH: The chance	FAST: As the population	Usually
	the individual	of getting selected	diversity is low and	terminated
	with higher	individual with	selection pressure is high,	with a local
	fitness values.	higher fitness	GA terminates at a faster	optimum
		values.	rate.	solution.
Tournament selection	HIGH-	LOW- MODERATE:	MODERATE: As population	Near
	MODERATE: A	If a random	diversity and selection	optimal
	random	selection is	pressure is low to moderate	solution is
	selection is	performed to	its termination rate is high	expected.
	made to form	select a winner,	to moderate.	
	team and hence	then selection		
	a fair chance is	pressure is low/		
	given to all	moderate.		
	individuals in			
	the population.			

(a) Obtain the offspring chromosome(s), it will produce from the reproduction of three parent chromosomes P_1 , P_2 and P_3 following the "Three parent crossover" technique? [4]

1	1	0	1	0	0	0	1
0	1	1	0	1	0	0	1

P_3 : 0 0 1 1 0 1 0	0
-----------------------	---

Answer

Three parent crossover technique: Each bit of P_1 is compared with the bit in the same position of P_2 . If the two bits are same, then it is copied to offspring else the bit (at the same position) of P_3 is copied to offspring. Thus, offspring produced is

0	1	1	1	0	0	0	1

(b) Two parent chromosomes in Order GA are given as under:

Obtain the two offspring that can be obtained following the "Partially mapped crossover" technique. [4]

Answer

Let c_1 and c_2 are the two offspring

- (i) Select any two points as crossover points on the parent chromosomes.
- (ii) A schema in P_1 (or P_2) is directly copied in the same location and order in c_1 (or c_2).
- (iii) The rest of the gene values in c_1 (or c_2) are obtained from P_2 (or P_1) in the same order as they appear.

Thus, two offspring chromosomes c_1 and c_2 will be obtained as

1	2	2	,	3	4	5	6	7	8	9	
1		2		3	4	5	6	7	8	9	

(c) "Linear crossover" technique in Real-coded GA takes the following form:

$$c_i = \alpha_i \cdot p_1 + \beta_i \cdot p_2$$

Where p_1 and p_2 are any two values and α_i , β_i are any two values chosen by the user.

Explain for the following two parent chromosomes, how two offspring chromosomes can be produced. [4]

P ₁ :	5	10
P ₂ :	6	9

<u>Answer</u>

Let us arbitrarily decide three set of values for $<\alpha_i,\beta_i>$ for three offspring chromosomes as follows:

$$\begin{split} c_{11} &= 0.5(p_{11} + p_{21}); \ c_{12} = 0.5(p_{12} + p_{22}); \\ c_{21} &= 1.5p_{11} - 0.5p_{21}; c_{22} = 1.5p_{21} - 0.5p_{22} \end{split}$$

(d) Explain the working of "Flipping" as mutation operator in Binary-coded GA.

[4]

<u>Answer</u>

An offspring can be mutated to a "mutated offspring" using the help of a "mutation chromosome." The mutation chromosome has a bit pattern with fewer 1's at random location. The number of 1's in "mutation chromosome" is decided by mutation

operator μ , which denotes the probability that a bit is 1 at a random location in "mutation chromosome".

A bit in the offspring chromosome is flipped 0 to 1 and vice versa if a bit in the same position in mutation chromosome is 1 only.

For example,

(e) Consider the following is a chromosome in Order-GA encoding scheme.

Explain how such a chromosome can be mutated. Consider the least change in chromosomes between the offspring and the mutated offspring. [4]

<u>Answer</u>

Let us consider the change in gene values between two positions as the least change possible.

- (i) First select two random locations in the offspring chromosome.
- (ii) Swap the gene values between the selected locations.

For example, two random locations are shown as *

Question 4

Each of the following question includes a statement and possibly the statements are wrong. You have to rewrite the sentence in their correct form. [10 X 2=20]

(a) Vector Evaluated Genetic Algorithm (VEGA) is a multi-objective evolutionary algorithm (MOEA), which is an a priori technique and Pareto based.

Answer

Vector Evaluated Genetic Algorithm (VEGA) is a multi-objective evolutionary algorithm (MOEA), which is an a posteriori technique and non-Pareto-based.

(b) A Pareto front is also a Pareto optimal front but the reverse is not true.

Answer

A <u>Pareto optimal front</u> is a <u>Pareto front</u> but the reverse is not true.

(c) Both NSGA and NSGA-II follow the "Crowding Tournament" selection strategy to create mating pool.

Answer

NSGA follows "Stochastic remainder selection" whereas NSGA-II follows "Crowding Tournament selection" to create mating pool.

(d) The length of chromosomes in encoding scheme while solving a multi-objective optimization problem (MOOP) is proportional to the number of objective functions in the MOOP.

<u>Answer</u>

The chromosome length in MOOP is independent of the number of chromosomes.

(e) If c_1 and c_2 are two offspring chromosomes, then according to NPGA, c_1 will be preferable to be selected for mating pool if c_1 's niche count is higher than that of c_2 .

<u>Answer</u>

If c_1 and c_2 are two offspring chromosomes, then according to NPGA, c_1 will be preferable to be selected for mating pool if c_1 's niche count is <u>lower than</u> that of c_2 .

(f) According to MOGA, the rank of a solution is defined as the number of solutions by which it is dominated.

Answer

According to MOGA, the rank of a solution x_i is defined as

$$rank(x_i) = 1 + p_i$$

Where p_i is the number of solutions which dominates x_i .

(g) The a priori high level information that is required in "Lexicographic ordering" is the scalar weights of each objective function.

Answer

The a priori high level information that is required in "Lexicographic ordering" is the descending ordering of the rank of the importance of objective functions.

(h) Crowded comparison operator ($<_c$) (as defined in NSGA-II) to select between x and y is defined as rank(x) < rank(y) or rank(x) > rank(y) and $x_d > y_d$.

Answer

Crowded comparison operator ($<_c$) (as defined in NSGA-II) to select between x and y is defined as rank(x) < rank(y) or $\underline{rank(x)} = \underline{rank(y)}$ and $\underline{x_d} < \underline{y_d}$.

- (i) A solution x_i is said to dominate another solution x_i if
 - 1. x_j is worse than x_i and
 - 2. x_i is strictly better than x_i .

Answer

A solution x_i is said to dominate another solution x_j if both conditions (1) and (2) are true.

- 1. x_i is no worse than x_i .
- 2. x_i is strictly better than x_i in at least one objective.
- (j) MOGA and NSGA follow their own steps to assign fitness values to all solutions in the current population whereas NPGA and NSGA-II do not require any fitness value calculation.

Answer

The statement is correct.

Question 5 Answer the following:

(a) What is niche count? What it does signify? Give an idea how niche count of a solution in a population can be calculated. [1+1+4=6]

Answer

Niche count: Niche count of a solution is a measure of how crowded the solution is by its neighboring solutions.

Physical meaning of Niche count: A solution with a higher niche count implies that the solution is a good representative of many other solutions with almost similar result. On the other hand, a solution with a lower niche count, if it is selected for mating pool then it ensures population diversity.

Measuring Niche count of a solution in a population: Let x_i be a solution whose Niche count is to be measured. Further, let x_i be any solution $(x_i \neq x_i)$ in the given population of size N with solutions x_1, x_2, \dots, x_N .

Let d_{ij} denotes the phenotype distance between x_i and x_j and σ_{share} is the maximum phenotype distance allowed between any two individuals to become members of a niche.

The, we calculate a sharing value $sh(d_{ij})$, which is as follows:

$$sh(d_{ij}) = \begin{cases} 1 - (\frac{d_{ij}}{\sigma_{share}})^2, & \text{if } d_{ij} < \sigma_{share} \\ 0 & \end{cases}$$

Finally, Niche count of the solution x_i will be obtained as

Niche Count
$$(x_i) = \sum_{\substack{i \neq j \ j=1}}^{N} sh(d_{ij})$$

(b) Explain the **concept** of non-dominated sorting procedure as proposed in NSGA. What is the use of non-dominated sorting output in NSGA? [3+5=8]

Answer

Concept of non-dominated sorting:

Suppose, X denotes a set of solutions of a multi-objective optimization problem and, |X| = N.

Given X, we can find all non-dominated solution's $X_1 \subseteq X$. All solutions in X_1 lies in a front is called first non-dominated front (see Figure).

After removing X_1 from X, and repeating the same procedure we get X_2 such $X_2 \subseteq (X - X_1).$

The above procedure can be continued until all solutions are sorted into front. Thus, given X, we obtain X_1, X_2, \dots, X_N which are called non-dominated sorting fronts in *X* .

Fitness assignments with non-dominated sorting fronts

Let X_i be the i-th non-dominated sorting fronts $(i=1,2,\ldots,n)$. The steps to assign fitness values to all solutions in X_i are as follows.

1. Assign a dummy fitness value say f_{X_i} to each solution belongs to X_i . The dummy fitness value is a very large number and typically is proportional to the number of solutions in all fronts up to the current front. That is,

$$f_{X_i} = |X_1 \cup X_2 \cup \dots \cup X_i|$$
, a proportional constant is ≥ 1 .

- 2. For each solution $x_j \in X_i$, it then calculates Niche count, $\gamma(x_j)$.
- 3. The fitness value of $x_i \in X_i$, is then calculated as

$$f_j = \frac{f_{X_i}}{\gamma(x_i)}$$

The above procedure is repeated to all solutions belongs to all fronts in X.

- (c) The non-dominated sorting GA (NSGA-II) procedure for finding multiple Pareto optimal solutions in a multi-objective optimization problem has the following three features:
 - (i) It uses an elitist principle
 - (ii) It uses an explicit diversity preserving mechanism, and
 - (iii) It emphasizes the non-dominated solutions.

Briefly explain how NSGA-II accomplishes the above mentioned features. You should mention the concept only instead of procedure for each. [2+2+2=6]

Answer

(i) NSGA-II adopts elitist principle

A set of solutions which are very close to the optimal solutions are called elite. NSGA-II computes elite solutions with two steps:

- A. Reproduce *N* offspring using *N* parents in the current population.
- B. Obtain improved N solutions from the set of 2N solutions, which are non-dominated front by front.
- (ii) NSGA-II follows explicit diversity preserving mechanism

NSGA-II proposes Crowding Tournament selection to ensure population diversity. To do this, it calculates "Crowding distance" for each solution. The crowding distance measure implies how a solution is crowded by its nearest neighbor. NSGA-II prefers a solution having less rank or crowding distance to be selected for mating.

(iii) NSGA-II emphasizes non-dominated sorting solutions

NSGA-II procedure in its each iteration obtains non-dominated sorting fronts. It then prefers the solutions in $first, second, \ldots, i-th$ fronts until it obtains a mating pool of size < N. To make the size of the mating pool exactly N, it selects the remaining solutions from the (i+1)th front using Crowding Tournament selection procedure.